THE HEATING RATE AS A VARIABLE IN NON-ISOTHERMAL KINETICS: III. SOME THEORETICAL ASPECTS CONCERNING THIS PROBLEM AND THE INVERSE PROBLEM OF CLASSICAL NON-ISOTHERMAL KINETICS

E. URBANOVICI

Research Institute for Electrotechnics, Sfintu Gheorghe Branch Str. Josef Attila Nr. 4, S fîntu Gheorghe, Județul Covasna (Romania)

E. SEGAL

Department of Physical Chemistry and Eiectrochemical Technology, Faculty of Chemical Technology, Polytechnic Institute of Bucharest, Bulevardul Republicii 13, Bucharest (Romania)

(Received 11 July 1988)

ABSTRACT

Following our earlier research concerning the heating rate as a variable in non-isothermal kinetics (E. Urbanovici and E. Segal, Thermochim. Acta, 95 (1985) 273; 107 (1986) 353), this paper aims to continue and develop our ideas concerning these topics from a theoretical standpoint based on two main assumptions: the validity of the classical hypothesis (constant kinetic parameters) and the invariability of the reaction mechanism with the heating rate.

INTRODUCTION

The well-known differential equation of classical non-isothermal kinetics $[1-4]$

$$
\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{A}{\beta} \mathbf{f}(\alpha) e^{-(E/RT)} \tag{1}
$$

with

$$
T = T_0 + \beta t \tag{2}
$$

$$
f(\alpha) = (1 - \alpha)^n \alpha^m \left[-\ln(1 - \alpha) \right]^p \tag{3}
$$

and the classical conditions

$$
A = \text{const.} \tag{4}
$$

$$
E = \text{const.} \tag{5}
$$

 $n =$ const, $m =$ const, $p =$ const.

(6)

is derived from the isothermal kinetic equation

$$
\frac{d\alpha}{dt} = Af(\alpha) e^{-(E/RT)} (T - \text{const})
$$
\n(7)

accepted as Postulated-Primary Isothermal Differential Kinetic Equation (P-PIDKE) [5], through the classical non-isothermal change (CNC) [5,6] taking into account the relationship

$$
\frac{\mathrm{d}T}{\mathrm{d}t} = \beta \tag{8}
$$

From eqn. (1), through integration between $(0, \alpha)$ and (α_i, α_k) one obtains

$$
\int_0^\alpha \frac{\mathrm{d}\alpha}{f(\alpha)} = \frac{A}{\beta} \int_{T_0=0}^T e^{-(E/RT)} \, \mathrm{d}T \tag{9}
$$

$$
\int_{\alpha_{r}}^{\alpha_{k}} \frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} \int_{T_{i}}^{T_{k}} e^{-(E/RT)} dT
$$
\n(10)

where T_i and T_k are the temperatures corresponding to α_i and α_k .

DEVELOPMENT OF RELATIONSHIP (9)

Let us consider a given α_i which is reached using the heating rates β_1 , β_2 , ..., β_k , and introduce the notation

$$
\int_0^{\alpha_i} \frac{\mathrm{d}\alpha}{\mathrm{f}(\alpha)} = Z_i \tag{11}
$$

and consider the dependence $T_i(\beta)$ given by

$$
T_i(\beta) = e_i(\beta) \tag{12}
$$

where the function $e_i(\beta)$ can be obtained through interpolation from the pairs of experimental data: $T_i(\beta_1)$, β_1 ; $T_i(\beta_2)$, β_2 ; ... $T_i(\beta_k)$, β_k . We consider the minimum necessary number of heating rates to be three. In this case, $e_i(\beta)$ can be a second degree polynominal.

Considering in eqn. (9) the derivative with respect to β , we obtain [7]

$$
Z_i = A e^{-(E/RT_i(\beta))} \frac{\mathrm{d}T_i(\beta)}{\mathrm{d}\beta} \tag{13}
$$

A new derivation with respect to β in eqn. (13) leads to

$$
e^{-(E/RT_i(\beta))}\frac{d^2T_i(\beta)}{d\beta^2} + e^{-(E/RT_i(\beta))}\left[\frac{E}{RT_i^2(\beta)}\left(\frac{dT_i(\beta)}{d\beta}\right)^2\right] = 0 \qquad (14)
$$

and

$$
E = -RT_i^2(\beta) \frac{((d^2T_i(\beta)/d\beta^2))}{((dT_i(\beta)/d\beta))^2} = -R e_i^2(\beta) \frac{e_i''(\beta)}{e_i'^2(\beta)}
$$
(15)

Relationship (15) allows the evaluation of the activation energy.

From eqn. (13), by taking natural logarithms, we obtain

$$
\ln\left(\frac{\mathrm{d}T_i(\beta)}{\mathrm{d}\beta}\right) = \ln\frac{Z_i}{A} + \frac{E}{R}\frac{1}{T_i(\beta)}\tag{16}
$$

a relationship which allows the evaluation of Z_i/A and E from a linear plot.

Considering the ratio of two relationships, eqn. (13) can be written, for the two heating rates β_1 and β_2 [7]

$$
E = R \frac{T_i(\beta_1) T_i(\beta_2)}{T_i(\beta_2) - T_i(\beta_1)} \ln \left[\frac{(\mathrm{d} T_i(\beta)/\mathrm{d}\beta)_{\beta_1}}{(\mathrm{d} T_i(\beta)/\mathrm{d}\beta)_{\beta_2}} \right]
$$
(17)

From eqns. (9) , (11) and (13) it is easy to obtain

$$
\frac{1}{\beta} \int_0^{T_i(\beta)} e^{-(E/RT)} dT = e^{-(E/RT_i(\beta))} \frac{dT_i(\beta)}{d\beta}
$$
\n(18)

Taking into account the approximate relationship [4]

$$
\int_0^T e^{-(E/RT)} dT = \frac{RT^2}{E} e^{-(E/RT)} Q(T, E)
$$
 (19)

where $Q(T, E)$ is a function with slow variation which in a first approximation equals unity. From eqns. (18) and (19)

$$
E = \frac{RT_i^2(\beta)}{\beta} \left(\frac{\mathrm{d}T_i(\beta)}{\mathrm{d}\beta} \right)^{-1} \mathrm{Q}(T_i(\beta), E) \tag{20}
$$

To evaluate *E,* one can solve eqn. (20), or alternatively an iterative procedure can be applied.

$$
E^{(0)} = \frac{RT_i^2(\beta)}{\beta} \left(\frac{\mathrm{d}T_i(\beta)}{\mathrm{d}\beta} \right)^{-1} \tag{21}
$$

$$
E^{(1)} = E^{(0)} Q(T_i(\beta), E^{(0)})
$$
\n(22)

$$
E^{(j)} = E^{(0)}(T_i(\beta), E^{(j-1)})
$$
\n(23)

The relationships (15), (16), (17) and (20) allow the evaluation of the activation energy *E* for a given value of the degree of conversion.

From eqns. (15) and (20) one obtains

$$
\frac{\mathrm{d}T_i(\beta)}{\mathrm{d}\beta} = -\frac{\beta}{\mathrm{Q}(T_i(\beta), E)} \frac{\mathrm{d}^2 T_i(\beta)}{\mathrm{d}\beta^2} \tag{24}
$$

In a first approximation, $Q(T, E) \approx 1$, and eqn. (24) becomes

$$
\frac{\mathrm{d}T_i(\beta)}{\mathrm{d}\beta} = -\beta \frac{\mathrm{d}^2 T_i(\beta)}{\mathrm{d}\beta^2} \tag{25}
$$

whose solution is

$$
T_i(\beta) = A_i + B_i \ln \beta \tag{26}
$$

where A_i and B_i are constants.

Comparing relationship (20) and Kissinger's relationship [8]

$$
\frac{\mathrm{d}\ln(\beta/T_{\mathrm{max}}^2)}{\mathrm{d}(1/T_{\mathrm{max}})} = -\frac{E}{R}
$$
\n(27)

or after performing the calculations

$$
\frac{\left(T_{\text{max}}^2/\beta\right)\left[\left(1/T_{\text{max}}^2\right) - \left(2\beta/T_{\text{max}}^3\right)\left(\frac{\mathrm{d}T_{\text{max}}}{\mathrm{d}\beta}\right)\right]\mathrm{d}\beta}{-\left(1/T_{\text{max}}^2\right)\left(\mathrm{d}T_{\text{max}}/\mathrm{d}\beta\right)\mathrm{d}\beta} = -\frac{E}{R} \tag{28}
$$

From eqn. (28)

$$
E = \frac{RT_{\text{max}}^2}{\beta} \left(1 - \frac{2\beta}{T_{\text{max}}} \frac{dT_{\text{max}}}{d\beta} \right) \left(\frac{dT_{\text{max}}}{d\beta} \right)^{-1}
$$
(29)

where

$$
1 - \frac{2\beta}{T_{\text{max}}} \frac{d T_{\text{max}}}{d \beta} \approx 1
$$
\n(30)

Thus there is a perfect analogy between relationships (29) and (20). This analogy can be explained by taking into account the fact that in Kissinger's model α_{max} does not change with β ; thus relationship (20) can be considered valid for α_{max} too.

In order to obtain $f(\alpha)$, we shall use the arguments in ref. 7. Introducing into eqn. (13) an average value of the activation energy

$$
\overline{E} = \frac{E_1 + E_2 + \dots E_N}{N} \tag{31}
$$

where N values of α_i have been used, one obtains

$$
Z_i = A e^{-(\overline{E}/RT_i(\beta))} \frac{\mathrm{d}T_i(\beta)}{\mathrm{d}\beta} \quad (i=1,2,\ldots,N)
$$
 (32)

By introducing the notation

$$
e^{-(\overline{E}/RT_i(\beta))}\frac{dT_i(\beta)}{d\beta}=a_i
$$
\n(33)

we obtain from (32)

$$
\frac{\sum Z_j}{\sum Z_k} = \frac{\sum a_j}{\sum a_k}, \ j \neq k \tag{34}
$$

a relationship which allows us to determine $f(\alpha)$. The particular form of eqn. (34) which we recommend is

$$
\frac{Z_1 + Z_3 + \dots}{Z_2 + Z_4 + \dots} = \frac{a_1 + a_3 + \dots}{a_2 + a_4 + \dots}
$$
 (35)

As far as the pre-exponential factor is concerned, it can be obtained from the following relationships

$$
A_i = Z_i e^{-(\overline{E}/RT_i(\beta))} \left(\frac{dT_i(\beta)}{d\beta} \right)^{-1}
$$
 (36)

where

$$
\bar{A} = (A_1 A_2 ... A_N)^{1/N}
$$
\n(37)

Another way of finding $f(\alpha)$ can also be considered. From relationships (1) and (13)

$$
Z_i f(\alpha_i) = \beta \left(\frac{d T_i(\beta)}{d \beta} \right) \left(\frac{d \alpha}{d T} \right)_{\alpha_i} (\beta)
$$
 (38)

where the values of the derivative $(d\alpha/dT)$, at various points and various heating rates are presumably known. By introducing the notations

$$
\left(\frac{\mathrm{d}T_i(\beta)}{\mathrm{d}\beta}\right)\!\left(\frac{\mathrm{d}\alpha}{\mathrm{d}T}\right)_{\alpha_i}(\beta) = b_i\tag{39}
$$

we obtain from (38) by summation

$$
\frac{Z_1f(\alpha_1) + Z_3f(\alpha_3) + \dots}{Z_2f(\alpha_2) + Z_4f(\alpha_4) + \dots} = \frac{b_1 + b_3 + \dots}{b_2 + b_4 + \dots}
$$
\n(40)

a relationship which can be used to find $f(\alpha)$.

The pre-exponential factor can be obtained from eqns. (36) and (37), or from eqn. (1) written in the form

$$
A_i = \frac{\beta e^{-(E/RT_i(\beta))}}{f(\alpha_i)} \left(\frac{d\alpha}{dT}\right)_{\alpha_i}(\beta)
$$
 (41)

and from eqn. (37).

DERIVATIONS FROM RELATIONSHIP (10)

We introduce the notation

$$
Z_{ik} = \int_{\alpha_i}^{\alpha_k} \frac{d\alpha}{f(\alpha)} \tag{42}
$$

Let us suppose that α_i and α_k are constants. Taking the derivative of eqn. (10) with respect to β

$$
Z_{ik} = A \left[e^{-(E/RT_k(\beta))} \frac{dT_k(\beta)}{d\beta} - e^{-(E/RT_i(\beta))} \frac{dT_i(\beta)}{d\beta} \right]
$$
(43)

From eqn. (43), taking the derivative with respect to β one obtains

$$
e^{-(E/RT_k(\beta))}\left[\frac{d^2T_k(\beta)}{d\beta^2} + \frac{E}{RT_k^2(\beta)}\left(\frac{dT_k(\beta)}{d\beta}\right)^2\right]
$$

= $e^{-(E/RT_l(\beta))}\left[\frac{d^2T_l(\beta)}{d\beta^2} + \frac{E}{RT_l^2(\beta)}\left(\frac{dT_l(\beta)}{d\beta}\right)^2\right]$ (44)

From two relationships of the form of eqn. (43) for two heating rates β_1 and β_2 one obtains [9]

$$
\frac{e^{-(E/RT_k(\beta_2))}(dT_k(\beta)/d\beta)_{\beta_2} - e^{-(E/RT_i(\beta_2))}((dT_i(\beta)/d\beta))_{\beta_2}}{e^{-E/RT_k(\beta_1)}((dT_i(\beta)/d\beta))_{\beta_1} - e^{-(E/RT_i(\beta_1))}((dT_i(\beta)/d\beta))_{\beta_1}} = 1
$$
\n(45)

From eqns. (10) and (43)

$$
\frac{1}{\beta} \int_{T_i(\beta)}^{T_k(\beta)} e^{-(E/RT)} dT = e^{-(E/RT_k(\beta))} \frac{dT_k(\beta)}{d\beta} - e^{-(E/RT_i(\beta))} \frac{dT_i(\beta)}{d\beta} \tag{46}
$$

Taking into account eqn. (19), eqn. (46) becomes

$$
\frac{1}{\beta} \left(\frac{RT_k^2(\beta)}{E} e^{-(E/RT_k(\beta))} Q(T_k(\beta), E) - \frac{RT_l^2(\beta)}{E} e^{-(E/RT_l(\beta))} Q(T_l(\beta), E) \right)
$$
\n
$$
= e^{-(E/RT_k(\beta))} \frac{dT_k(\beta)}{d\beta} - e^{-(E/RT_l(\beta))} \frac{dT_l(\beta)}{d\beta}
$$
\n(47)

From eqns. (44), (45) and (47) the activation energy can be evaluated.

In the following, the notation λ will be used for the pairs (i, k). In such terms the average values of the activation energy is

$$
\overline{E} = \frac{\sum_{\lambda=1}^{N} E_{\lambda}}{N} \tag{48}
$$

Equation (43) can be written in the short form

$$
Z_{ik} = AC_{\lambda} \tag{49}
$$

where

$$
C_{\lambda} = e^{-(\overline{E}/RT_k(\beta))} \frac{dT_k(\beta)}{d\beta} - e^{-(\overline{E}/RT_l(\beta))} \frac{dT_i(\beta)}{d\beta}
$$
(50)

In order to find $f(\alpha)$, a relationship of the form of eqn. (34) can be used, for instance

$$
\frac{Z_1^{\star} + Z_3^{\star} + \dots}{Z_2^{\star} + Z_4^{\star} + \dots} = \frac{C_1 + C_3 + \dots}{C_2 + C_4 + \dots}
$$
 (51)

where

$$
Z_{\lambda}^{\star} = Z_{ik}, (i, k) = \lambda
$$
\n(52)

Writing relationship (43) in the form

$$
A = \frac{Z^{\star}}{C_{\lambda}} (\lambda = 1, 2, \dots, N)
$$
 (53)

and using eqn. (37), the value of the pre-exponential factor can be calculated.

From eqns. (7) and (43)

$$
Z_{ik} = \beta \left(\frac{d T_k(\beta)}{d \beta} \right) \left(\frac{d \alpha}{d T} \right)_{\alpha_k} (\beta) \frac{1}{f(\alpha_k)}
$$

$$
- \beta \left(\frac{d T_i(\beta)}{d \beta} \right) \left(\frac{d \alpha}{d T} \right)_{\alpha_i} (\beta) \frac{1}{f(\alpha_i)}
$$
(54)

From eqn. (54), the function $f_{\lambda}(\alpha)$ for pairs (i, k) can be obtained. Averaging such functions for all the values of λ allows the determination of $f(\alpha)$.

DERIVATIONS FROM RELATIONSHIP (7)

In this case, an interpolation function

$$
\left(\frac{\mathrm{d}\,\alpha}{\mathrm{d}\,T}\right)_{\alpha_i}(\beta) = g_i(\beta) \tag{55}
$$

is assumed to be known from the experimental data.

From the derivative of eqn. (7) with respect to β

$$
\frac{\mathrm{d}g_i(\beta)}{\mathrm{d}\beta} = -\frac{A}{\beta^2} \mathbf{f}(\alpha_i) e^{-(E/RT_i(\beta))} + \frac{A}{\beta} \mathbf{f}(\alpha_i) e^{-(E/RT_i(\beta))} \frac{E}{RT_i^2(\beta)} \frac{\mathrm{d}T_i(\beta)}{\mathrm{d}\beta}
$$
(56)

and eqn. (7) one obtains

$$
\frac{dg_i(\beta)}{d\beta} = -\frac{g_i(\beta)}{\beta} + g_i(\beta) \frac{E}{RT_i^2(\beta)} \frac{dT_i(\beta)}{d\beta} \tag{57}
$$

and

$$
E = RT_i^2(\beta) \frac{g_i(\beta) + \beta((\mathrm{d}g_i(\beta)/\mathrm{d}\beta))}{\beta g_i(\beta)((\mathrm{d}T_i(\beta)/\mathrm{d}\beta))}
$$
(58)

In this case, also from the ratio of two relationships of the form of eqn. (56) for two heating rates β_1 and β_2 , an equation to calculate the activation energy can be obtained.

In order to find $f(\alpha)$, we shall use eqn. (7) with the notation

$$
f(\alpha_i) = \frac{\beta}{A} g_i(\beta) e^{(E/RT_i(\beta))} = \frac{1}{A} d_i
$$
 (59)

with these conditions

$$
f(\alpha_i) = \frac{1}{A} d_i \tag{60}
$$

$$
\frac{f(\alpha_1) + f(\alpha_3) + \dots}{f(\alpha_2) + f(\alpha_4) + \dots} = \frac{d_1 + d_3 + \dots}{d_2 + d_4 + \dots}
$$
(61)

As far as the pre-exponential factor is concerned, it can be obtained from

$$
A_i = \frac{\beta}{f(\alpha_i)} g_i(\beta) e^{(E/RT_i(\beta))}
$$
\n(62)

and eqn. (37).

The applications of the presented results will be given in a following paper.

CONCLUSIONS

Some alternative solutions of the inverse problem of non-isothermal kinetics were discussed using the constant heating rate as a variable. All the theoretical considerations are based on the assumption of the validity of classical non-isothermal kinetics.

REFERENCES

- 1 E. Segal and D. Fatu, Introduction to Non-isothermal Kinetics, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest, 1983, p. 70 (in Romanian).
- 2 J. Sestak, Thermophysical Properties of Solids, Academia, Prague, 1984, p. 218.
- 3 J. Sestak and G. Berggren, Thermochim. Acta, 3 (1971) 1.
- 4 J. Sestak, V.V. Satava and W.W. Wendlandt, Thermochim Acta, 7 (1973) 447.
- 5 E. Urbanovici and E. SegaI, Thermochim. Acta, 118 (1987) 65.
- 6 E. Urbanovici and E. Segal, Thermochim. Acta, 125 (1988) 261.
- 7 E. Urbanovici and E. Segal, Thermochim. Acta, 95 (1985) 73.
- 8 H. Kissinger, Anal. Chem., 29 (1957) 1702.
- 9 E. Urbanovici and E. Segal, Thermochim. Acta, 107 (1986) 353.