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ABSTRACT 

Following our earlier research concerning the heating rate as a variable in non-isothermal 
kinetics (E. Urbanovici and E. Segal, Thermochim. Acta, 95 (1985) 273; 107 (1986) 353), this 
paper aims to continue and develop our ideas concerning these topics from a theoretical 
standpoint based on two main assumptions: the validity of the classical hypothesis (constant 
kinetic parameters) and the invariability of the reaction mechanism with the heating rate. 

INTRODUCTION 

The well-known differential equation of classical non-isothermal kinetics 

[l-41 
dcu A 

dT = --f(“) e-(-wT) 

with 

T= T,+pt 

f(~)=(l--(Y)ncP[-ln(l-cy)]P 

and the classical conditions 

A = const. 

E = const. 

n = cons& m = const, p = const. 

(2) 

(3) 

(4) 

(5) 

(6) 
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is derived from the isothermal kinetic equation 

g = Af( a) e-(E’RT)( T - const) (7) 

accepted as Postulated-Primary Isothermal Differential Kinetic Equation 
(P-PIDKE) [5], through the classical non-isothermal change (CNC) [5,6] 
taking into account the relationship 

dT 

dt- -P (8) 

From eqn. (l), through integration between (0, a) and ((Y;, CQ) one obtains 

J 

“da A = 
o f~ = p T,=. e-(E’RT) dT 

J (9) 

J 

nk da A ” e-(E/Rr) dT -=- 
J a, f(a) p T 

(10) 

where T and Tk are the temperatures corresponding to (Y; and Q. 

DEVELOPMENT OF RELATIONSHIP (9) 

Let us consider a given (Y; which is reached using the heating rates &, 

P Pk, 2,“‘, and introduce the notation 

/ 

a, da 
- = 2, 

0 f(a) 
01) 

and consider the dependence T,(p) given by 

T(P) = e;(B) (12) 

where the function e,( j3) can be obtained through interpolation from the 
pairs of experimental data: T( pi), pi; Z’J( &), &; . . . q(Pk), pk. We 
consider the minimum necessary number of heating rates to be three. In this 
case, ei( p) can be a second degree polynominal. 

Considering in eqn. (9) the derivative with respect to p, we obtain [7] 

A new derivation with respect to p in eqn. (13) leads to 

and 

E = -RT.2(/3) 

(13) 

(15) 

Relationship (15) allows the evaluation of the activation energy. 
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From eqn. (13), by taking natural logarithms, we obtain 

=lnZL+E ’ 
A R T(P) 

(16) 

a relationship which allows the evaluation of Z/A and E from a linear plot. 
Considering the ratio of two relationships, eqn. (13) can be written, for 

the two heating rates pi and & [7] 

T.(Pl)W2) 
E = R T:.(P,> - UP,> In 

wxP)/w& 
@W)/dk%, 1 

From eqns. (9), (11) and (13) it is easy to obtain 

’ J ‘(‘) e-(&‘RT) dT= e-W’RT(B)~~ dT(P) 
PO dfi 
Taking into account the approximate relationship [4] 

J 
T 

e-WRT) dT = 
RT2 
- e-(E/RT)Q(T, E) 

0 E 

(17) 

(18) 

where Q( T, E) is a function with slow variation which in a first approxima- 
tion equals unity. From eqns. (18) and (19) 

(20) 

To evaluate E, one can solve eqn. (20), or alternatively an iterative proce- 
dure can be applied. 

E(o) = RT2W 
P (21) 

E(l) = E”‘Q(r.(p), E(O)) (22) 
E(j) = E’O’(q(@, E”-“) (23) 
The relationships (15), (16), (17) and (20) allow the evaluation of the 
activation energy E for a given value of the degree of conversion. 

From eqns. (15) and (20) one obtains 

m=_ P d2T(P) 
0 Q(T(Ph E) W2 

In a first approximation, Q( T, E) = 1, and eqn. (24) becomes 

m= 
@ 

+ d’T(P) 
dP2 

(25) 

whose solution is 

T(p) = Ai + B, In p 

where Ai and Bi are constants. 

(26) 
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Comparing relationship (20) and Kissinger’s relationship [8] 

dln(p/%) = E -- 
d(l/G,) R 

or after performing the calculations 

(Gk’P)[(I/‘G?~) - (2B/‘~~~)(dT,,/‘d~)] dp E -- 
-(l/~~,)(dT,,/d~) dD = R 

From eqn. (28) 

E= 
RCax 

P 

where 

(27) 

(28) 

(2% 

Thus there is a perfect analogy between relationships (29) and (20). This 
analogy can be explained by taking into account the fact that in Kissinger’s 
model (Y,, does not change with p; thus relationship (20) can be considered 
valid for (Y,, too. 

In order to obtain f(a), we shall use the arguments in ref. 7. Introducing 
into eqn. (13) an average value of the activation energy 

E= 
E, + E, + . . . EN 

N 

where N values of CX~ have been used, one obtains 

(31) 

zi = A e-~~,WB”~ (i=l,2, . ..N) (32) 

By introducing the notation 

e-~~,RT.UU)%@ = a, 
W ’ 

(33) 

we obtain from (32) 

Czj Cai == Ca,‘ek (34) 

a relationship which allows us to determine f( LY). The particular form of eqn. 
(34) which we recommend is 

z,+z,+ . . . a,+a,+ . . . 
Z,+Z,+ . . . = a,+a,+ . . . (35) 
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As far as the pre-exponential factor is concerned, it can be obtained from 
the following relationships 

Ai = zi e-(~/RW)) %$ -’ 
i 1 (36) 

where 

A= ( A,A, . . . A,)liN (37) 

Another way of finding f(a) can also be considered. From relationships (1) 
and (13) 

(38) 

where the values of the derivative (dcu/dT), at various points and various 
heating rates are presumably known. By introducing the notations 

we obtain from (38) by summation 

Z,f(a,) + z,&) + *** b, + b, + . . . 

z,f(a,)+Z,f(aJ+... = b,+b,+... 

(39) 

a relationship which can be used to find f(a). 
The pre-exponential factor can be obtained from eqns. (36) and (37), or 

from eqn. (1) written in the form 

and from eqn. (37). 

DERIVATIONS FROM RELATIONSHIP (10) 

We introduce the notation 

Let us suppose that CY~ and CY~ are constants. Taking 
(10) with respect to j3 

(41) 

(44 

the derivative of eqn. 

(43) 
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From eqn. (43), taking the derivative with respect to p one obtains 

(44) 

From two relationships of the form of eqn. (43) for two heating rates & and 
,B2 one obtains [9] 

e-(E’RT,(B2))(dTk(P)/dp)a, - e-(E’R”(&))((d~(P)/dp))p, 

e-E’RT,(Pl)((d~((P)/dp))p, - e-(E’R7;(P1))((dlrl(P)/dp))p, = ’ 
(45) 

From eqns. (10) and (43) 

’ Tk(Bk_W/RT) dT= e-(.6’Rr,(P)) dT,tP) 
P J 7;(P) dP 

_ e-(E,'RI;(j3)) dF(fl) 
d/3 (46) 

Taking into account eqn. (19), eqn. (46) becomes 

e (~/R~(~))Q(T~(~), E) 

RT2(P) - - e (E/RT;(P))Q( q( p), E)) 

=e -(fR,,i&) dTkfP) 
d/3 

_ e-(E/'Rrr;(#?)) dK(@ 
dP (47) 

From eqns. (44), (45) and (47) the activation energy can be evaluated. 
In the following, the notation h will be used for the pairs (i, k). In such 

terms the average values of the activation energy is 

j.& Z&x 
N 

(48) 

Equation (43) can be written in the short form 

Z,,=AC, (4% 

where 

c, = e-(~/RG@)) em 
0 

_ e-(E,RT(B)) dq(P) 
dfi (50) 

In order to find f(iy), a relationship of the form of eqn. (34) can be used, for 
instance 

z;+z;+ . . . c, + c, + . . . 
z,* + z,* + = c, + c, + . . . 



39 

where 

zx” = Zik, (i, k) =x (52) 

Writing relationship (43) in the form 

A = ~(X=l,2,...,iv) 
x 

(53) 

and using eqn. (37), the value of the pre-exponential factor can be calcu- 
lated. 

From eqns. (7) and (43) 

(54) 

From eqn. (54), the function f,(a) for pairs (i, k) can be obtained. 
Averaging such functions for all the values of X allows the determination of 

f(a). 

DERIVATIONS FROM RELATIONSHIP (7) 

In this case, an interpolation function 

is assumed to be known from the experimental data. 
From the derivative of eqn. (7) with respect to /3 

dg,(P)= 
dB 

- $ f( ,i)e-(E/RT(P)) + $ f( ,i)e-(E/RT(B)) 

(56) 

and eqn. (7) one obtains 

and 

E= RT,2(p) ITi + fi((dgi(P)/dfl)) 
I Bgi(P)((dT(O/dP)) 

(57) 

(58) 

In this case, also from the ratio of two relationships of the form of eqn. (56) 
for two heating rates ,Bi and &, an equation to calculate the activation 
energy can be obtained. 
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In order to find f(a), we shall use eqn. (7) with the notation 

fbi) = %pi(B) eWRT(P)) = .i!~ d 

A i 

with these conditions 

f(ai) = f di 

f(a,) + f(a,) + . . . d,+d,+ . . . 

f(a2)+f(a4)+... = d,+d,+... 

(60) 

(61) 

As far as the pre-exponential factor is concerned, it can be obtained from 

(62) 

and eqn. (37). 
The applications of the presented results will be given in a following 

paper. 

CONCLUSIONS 

Some alternative solutions of the inverse problem of non-isothermal 
kinetics were discussed using the constant heating rate as a variable. All the 
theoretical considerations are based on the assumption of the validity of 
classical non-isothermal kinetics. 
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